

Lecture 14. Spans and subspaces

Def Let V be a vector space.

- (1) A subspace of V is a vector space contained in V
(with the same addition and scalar multiplication)
- (2) A linear combination of vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ in V is a vector of the form $c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_n\vec{v}_n$ with $c_1, c_2, \dots, c_n \in \mathbb{R}$.
- (3) The span of vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ in V is the set of all linear combinations of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$.
- (4) Vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ in V are linearly independent if we have $c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_n\vec{v}_n \neq \vec{0}$ unless c_1, c_2, \dots, c_n are all zero.

Prop Given vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ in a vector space V , their span is a subspace of V .

pf

• zero vector: $\vec{0} = 0 \cdot \vec{v}_1 + 0 \cdot \vec{v}_2 + \dots + 0 \cdot \vec{v}_n$ in the span

• closed under addition:

$\vec{u} = c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_n\vec{v}_n$ and $\vec{v} = d_1\vec{v}_1 + d_2\vec{v}_2 + \dots + d_n\vec{v}_n$ in the span

$\Rightarrow \vec{u} + \vec{v} = (c_1 + d_1)\vec{v}_1 + (c_2 + d_2)\vec{v}_2 + \dots + (c_n + d_n)\vec{v}_n$ in the span

• closed under scalar multiplication:

$\vec{u} = c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_n\vec{v}_n$ in the span

$\Rightarrow c\vec{u} = c c_1\vec{v}_1 + c c_2\vec{v}_2 + \dots + c c_n\vec{v}_n$ in the span for any $c \in \mathbb{R}$

Hence the span of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ is a subspace of V .

Ex Determine whether each set is a subspace of \mathbb{R}^2 .

(1) The set of all vectors of the form $\begin{bmatrix} a-b \\ 2 \end{bmatrix}$ with $a, b \in \mathbb{R}$

Sol The set does not contain the zero vector.

(the second coordinate can never be 0)

\Rightarrow The set is not a subspace of \mathbb{R}^2

(2) The set of all vectors of the form $\begin{bmatrix} 2a-3b \\ a+4b \end{bmatrix}$ with $a, b \in \mathbb{R}$

Sol We may write $\begin{bmatrix} 2a-3b \\ a+4b \end{bmatrix} = a \begin{bmatrix} 2 \\ 1 \end{bmatrix} + b \begin{bmatrix} -3 \\ 4 \end{bmatrix}$

\Rightarrow The set is the span of $\vec{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$.

\Rightarrow The set is a subspace of \mathbb{R}^2

(3) The set of all vectors of the form $\begin{bmatrix} a^3 - b^3 \\ 2b^3 \end{bmatrix}$ with $a, b \in \mathbb{R}$.

Sol We may write $\begin{bmatrix} a^3 - b^3 \\ 2b^3 \end{bmatrix} = a^3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b^3 \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

\Rightarrow The set is the span of $\vec{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$.

(the scalar factors a^3 and b^3 are arbitrary)

\Rightarrow The set is a subspace of \mathbb{R}^2

(4) The set of all vectors of the form $\begin{bmatrix} a^2 - b^2 \\ 2b^2 \end{bmatrix}$ with $a, b \in \mathbb{R}$.

Sol The set is not closed under scalar multiplication:

$$\left. \begin{array}{l} \vec{v} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \text{ in the set with } a=1 \text{ and } b=1 \\ -\vec{v} = \begin{bmatrix} 0 \\ -2 \end{bmatrix} \text{ not in the set} \end{array} \right\}$$

(the second coordinate $2b^2$ can never be negative)

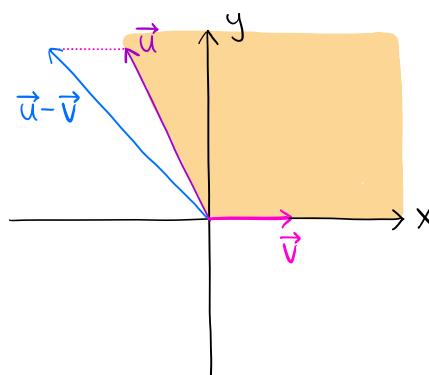
\Rightarrow The set is not a subspace of \mathbb{R}^2

Note Although we may write $\begin{bmatrix} a^2 - b^2 \\ 2b^2 \end{bmatrix} = a^2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b^2 \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, the set is

not spanned by $\vec{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. In fact, the scalar

factors a^2 and b^2 are not arbitrary as they can never take negative values.

* $\vec{u} - \vec{v}$ does not lie in the set even though it lies in the span of \vec{u} and \vec{v} .



the set is given by
nonnegative combinations
of \vec{u} and \vec{v}

Ex Determine whether each set is a subspace of \mathbb{P} , where \mathbb{P} denotes the space of all polynomials.

(1) The set of all polynomials of the form $p(t) = at^2$ with $a \in \mathbb{R}$.

Sol The set is the span of the polynomial t^2 .

\Rightarrow The set is a subspace of \mathbb{P}

(2) The set of all polynomials of the form $p(t) = a + bt$ with $a, b \in \mathbb{R}$.

Sol We may write $a + bt = a \cdot 1 + b \cdot t$

\Rightarrow The set is the span of the polynomials 1 and t .

\Rightarrow The set is a subspace of \mathbb{P}

Note Here we regard 1 as a constant polynomial ($1 = t^0$)

(3) The set of all polynomials of the form $p(t) = a + t$ with $a \in \mathbb{R}$.

Sol The set does not contain the zero polynomial.

($0 \neq a + t$ for any $a \in \mathbb{R}$)

\Rightarrow The set is not a subspace of \mathbb{P}

Note The set is not spanned by 1 and t . In fact, we have

$a + t = a \cdot 1 + 1 \cdot t$ where the scalar factor for t is fixed to be 1.
not arbitrary

* $3 + 2t$ does not lie in the set even though it lies in the span of 1 and t .

(4) The set of all polynomials $p(x)$ with $p(3) = 0$.

- closed under addition:

$p(t)$ and $q(t)$ with value 0 at $t=3$

$\Rightarrow p(t) + q(t)$ with value $0+0=0$ at $t=3$

- closed under scalar multiplication:

$p(t)$ with value 0 at $t=3$

$\Rightarrow c p(t)$ with value $c \cdot 0 = 0$ at $t = 3$ for any $c \in \mathbb{R}$

Hence the set is a subspace of \mathbb{P}

(5) The set of all polynomials $p(t)$ with $p(3)=4$

Sol The set does not contain the zero polynomial.

\Rightarrow The set is not a subspace of \mathbb{P}